Search results

Search for "Kelvin probe force microscopy (KPFM)" in Full Text gives 45 result(s) in Beilstein Journal of Nanotechnology.

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • uniformity. WSxM software was used to carry out AFM image analysis. Kelvin probe force microscopy (KPFM) was used to study the local work function of the WOx films. WOx samples were removed from the high-vacuum environment right before the KPFM measurements to avoid any contamination in air. For KPFM
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • Benjamin Grevin Fatima Husainy Dmitry Aldakov Cyril Aumaitre Univ. Grenoble Alpes, CNRS, CEA, IRIG-SyMMES, 38000 Grenoble, France 10.3762/bjnano.14.88 Abstract We present a new open-loop implementation of Kelvin probe force microscopy (KPFM) that provides access to the Fourier spectrum of the
  • ; intermodulation; KPFM; nc-AFM; surface photovoltage; time-resolved measurements; Introduction Kelvin probe force microscopy (KPFM) is a well-known variant of AFM that allows probing at the nanoscale the electrostatic landscape on the surface of a sample by measuring the so-called contact potential difference
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • In this work, a silicon photodiode integrated with a piezoelectric membrane is studied by Kelvin probe force microscopy (KPFM) under modulated illumination. Time-dependent KPFM enables simultaneous quantification of the surface photovoltage generated by the photodiode as well as the resulting
  • spatially map voltage-induced oscillation of various sizes of piezoelectric membranes without the photodiode to investigate their position- and size-dependent displacement. Keywords: Kelvin probe force microscopy (KPFM); light-driven micro/nano systems; piezoelectric membrane; surface photovoltage (SPV
  • with atomic vertical resolution. In several studies, AFM has been used to determine photo-induced height/topography variation in organic–inorganic lead halide perovskites [15], nanosheets [16], and photosensitive polymers [17]. Kelvin probe force microscopy (KPFM), an electrostatic variant of AFM, can
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • measurements based on scanning probe microscopy (SPM) allow for the analysis of two-dimensional (2D) features at the surface and along a physical cross section of nanoscale semiconductor structures. Among the wide variety of SPM techniques available [3], Kelvin probe force microscopy (KPFM) is an application
PDF
Album
Full Research Paper
Published 14 Jun 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • Ryo Izumi Masato Miyazaki Yan Jun Li Yasuhiro Sugawara Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan 10.3762/bjnano.14.18 Abstract The recently proposed high–low Kelvin probe force microscopy (KPFM) enables evaluation
  • [1][2][3]. Therefore, direct observation of semiconductor surfaces with nanoscale spatial resolution will become even more important for understanding and controlling the effects of these properties on devices and for evaluating semiconductor device operation. Kelvin probe force microscopy (KPFM) is
PDF
Album
Full Research Paper
Published 31 Jan 2023

Utilizing the surface potential of a solid electrolyte region as the potential reference in Kelvin probe force microscopy

  • Nobuyuki Ishida

Beilstein J. Nanotechnol. 2022, 13, 1558–1563, doi:10.3762/bjnano.13.129

Graphical Abstract
  • electrodes. In Kelvin probe force microscopy (KPFM) measurements on electrochemical cells, the surface potential is generally measured relative to electrical ground instead of a stable reference. Here, we show that the changes in the surface potential, measured using KPFM relative to the surface potential in
  • . Keywords: electrochemistry; Kelvin probe force microscopy (KPFM); reference electrode; solid electrolyte; Introduction Kelvin probe force microscopy (KPFM) is a scanning probe technique for imaging surface potentials on the nanometer scale [1][2][3][4]. Its operating principle is based on detecting the
PDF
Album
Full Research Paper
Published 19 Dec 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • governing the performance of single and multifrequency Kelvin probe force microscopy (KPFM) techniques in both air and water. Metrics such as minimum detectable contact potential difference, minimum required AC bias, and signal-to-noise ratio are compared and contrasted both off resonance and utilizing the
  • of topography and surface properties of interfaces in a wide range of environments [1]. Kelvin probe force microscopy (KPFM) utilizes the application of a bias and a conductive probe to map the local electrical properties of an interface at the nanoscale [2], allowing for the determination of the
PDF
Full Research Paper
Published 12 Sep 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • photocatalytic semiconductors. The local SPV is generally measured consecutively by Kelvin probe force microscopy (KPFM) in darkness and under illumination, in which thermal drift degrades spatial and energy resolutions. In this study, we propose the method of AC bias Kelvin probe force microscopy (AC-KPFM
  • features as band bending [3][4], the lifetimes of excited carriers [5][6][7], the minority carrier diffusion length [8][9], and the plasmonic effect [10][11][12]. The local SPV is usually measured by Kelvin probe force microscopy (KPFM) [13][14][15][16][17][18][19][20][21], which is based on atomic force
PDF
Album
Full Research Paper
Published 25 Jul 2022

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • was used as a model to demonstrate that a combination of polarization relaxation measurements and Kelvin probe force microscopy (KPFM)-based mapping of the Volta potential before and after the end of polarization can be used to determine the chemical diffusion coefficient of the ceria component of the
  • |ceria, ceria|electron conductor, and electron conductor|electron conductor). Kelvin probe force microscopy (KPFM) is an atomic force microscopy (AFM)-based measurement method that can measure the local surface potential (or Volta potential) of the sample [18][19]. The surface potential is a sensitive
PDF
Album
Full Research Paper
Published 15 Dec 2021

Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode

  • Gheorghe Stan and
  • Pradeep Namboodiri

Beilstein J. Nanotechnol. 2021, 12, 1115–1126, doi:10.3762/bjnano.12.83

Graphical Abstract
  • (OL) variant of Kelvin probe force microscopy (KPFM) provides access to the voltage response of the electrostatic interaction between a conductive atomic force microscopy (AFM) probe and the investigated sample. The measured response can be analyzed a posteriori, modeled, and interpreted to include
  • probe force microscopy; open loop; surface potential; Introduction Over many years, an abundance of developments and applications has made Kelvin probe force microscopy (KPFM) [1] one of the most versatile nanoscale surface electronic characterization techniques. With its main measurement in terms of
PDF
Album
Full Research Paper
Published 06 Oct 2021

Local stiffness and work function variations of hexagonal boron nitride on Cu(111)

  • Abhishek Grewal,
  • Yuqi Wang,
  • Matthias Münks,
  • Klaus Kern and
  • Markus Ternes

Beilstein J. Nanotechnol. 2021, 12, 559–565, doi:10.3762/bjnano.12.46

Graphical Abstract
  • –4.5 V is due to varying contributions from the two interfaces of the dielectric layer. We therefore evaluate the unambiguous shift of the second peak at around 5.6–6.0 V as a measure for the local Φ variation. Our nc-AFM allows us to employ with Kelvin probe force microscopy (KPFM) a second
PDF
Album
Letter
Published 17 Jun 2021

Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene

  • Zhao Liu,
  • Antoine Hinaut,
  • Stefan Peeters,
  • Sebastian Scherb,
  • Ernst Meyer,
  • Maria Clelia Righi and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2021, 12, 432–439, doi:10.3762/bjnano.12.35

Graphical Abstract
  • Kelvin probe force microscopy (KPFM), as can be seen in Supporting Information File 1, Figure S3. To be able to tune this corrugated structure, a monolayer of graphene was prepared on Ir(111) before KBr deposition. Figure 4a shows a large-area topography of the Ir(111) surface, half of which is covered
  • –800 pm and a typical quality factor of Q2 = 10,000) with the torsional resonance detection (frequency of ft ≈ 1.5 MHz, amplitude of At = 20–80 pm and a typical quality factor of Qt = 100,000) [50][52]. Kelvin probe force microscopy (KPFM) was performed in FM-KPFM mode by applying a DC compensation and
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2021

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • solid electrolyte interface (SEI) on graphite anodes and HOPG [14][15][16], Li metal [17] and on cathode materials [18][19] as well as the changes in particle size during ageing [19][20]. Other AFM modes used for the analysis of ageing are, for example, Kelvin probe force microscopy (KPFM) and
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • PTB7 and PC71BM is subsequently investigated by recording point-spectroscopy curves as a function of the optical power at the cathode and by mapping 2D time-resolved images of the surface photovoltage of the bare organic active layer. Keywords: bulk heterojunctions; Kelvin probe force microscopy (KPFM
  • the development of new time-resolved extensions of electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). Time-resolved EFM (trEFM) has been used to map photoinduced charging rates (i.e., the time needed to reach an electrostatic equilibrium after illumination) in organic donor
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • future energy production and storage. As the majority of applications involve the use of heterostructures, the most suitable characterization technique is Kelvin probe force microscopy (KPFM), which provides excellent energetic and lateral resolution. In this paper, we demonstrate precise
  • . Keywords: Kelvin probe force microscopy (KPFM); reduction and oxidation; SrTiO3; TiO nanowires; TiO/SrTiO3 heterostructure; transition metal oxides; work function; Introduction Transition metal oxides are viewed today as some of the most promising materials in various fields, ranging from (photo)catalysis
  • energetic resolution, Kelvin probe force microscopy (KPFM, also known as scanning Kelvin probe microscopy, SKPM) is the tool of choice for the precise measurement of the WF across oxide heterostructures, which is a technique that has not been fully exploited to date. In recent years, KPFM has proved to be
PDF
Album
Full Research Paper
Published 02 Aug 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • nanosheets through the reaction with the Bi2Se3. The Schottky barrier formed by the 1D and 2D nanoinclusions was characterized by means of atomic force microscopy (AFM). We used Kelvin probe force microscopy (KPFM) in ambient atmosphere at the nanoscale and compared the results to those of ultraviolet
  • material [19][20][21]; ii) by mapping of the different surface contact potential values by Kelvin probe force microscopy (KPFM) in the semicontact mode [19][22][23][24][25], or iii) by measuring the differences in thermal conductivity by scanning thermal microscopy (SThM) [19][20][26]. Shape, size
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • observed with a lateral resolution of several nanometers by Kelvin probe force microscopy (KPFM) [29][30]. However, the dependence of surface potential on direction and structure of steps such as [001], and has not yet been clarified. In scanning tunneling microscopy (STM) [31] studies, three typical
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Comparing a porphyrin- and a coumarin-based dye adsorbed on NiO(001)

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2019, 10, 874–881, doi:10.3762/bjnano.10.88

Graphical Abstract
  • investigated by Kelvin probe force microscopy (KPFM) [25]. This technique is used to observe and quantify the contact potential difference (CPD) changes between the metal oxide surface and the molecular layers and to determine the corresponding dipole moments. Results and Discussion Atomically clean NiO
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2019

Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements

  • Aaron Mascaro,
  • Yoichi Miyahara,
  • Tyler Enright,
  • Omur E. Dagdeviren and
  • Peter Grütter

Beilstein J. Nanotechnol. 2019, 10, 617–633, doi:10.3762/bjnano.10.62

Graphical Abstract
  • -domain EFM to measure ionic transport [7][12], time-resolved electrochemical strain microscopy (ESM) to measure ionic transport [8][13], various time-resolved Kelvin probe force microscopy (KPFM) techniques that utilize either optical pump-probe or advanced signal processing to measure time-resolved
  • . One example of this is in time-resolved Kelvin probe force microscopy (KPFM) experiments that measure the surface photovoltage of a sample as a function of time after a light source is pulsed. This was first implemented by Takihara et al. to measure the photovoltage dynamics of a sample at time scales
PDF
Album
Supp Info
Review
Published 01 Mar 2019

Nitrous oxide as an effective AFM tip functionalization: a comparative study

  • Taras Chutora,
  • Bruno de la Torre,
  • Pingo Mutombo,
  • Jack Hellerstedt,
  • Jaromír Kopeček,
  • Pavel Jelínek and
  • Martin Švec

Beilstein J. Nanotechnol. 2019, 10, 315–321, doi:10.3762/bjnano.10.30

Graphical Abstract
  • spectroscopy measurements, i.e., the interaction energy toward different atomic species in force spectroscopy, the contact potential difference in Kelvin probe force microscopy (KPFM) [9][29] and vibrational levels of inelastic tunneling spectroscopy (IETS) [30][31]. A particular termination of the tip may be
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2019

Scanning probe microscopy for energy-related materials

  • Rüdiger Berger,
  • Benjamin Grévin,
  • Philippe Leclère and
  • Yi Zhang

Beilstein J. Nanotechnol. 2019, 10, 132–134, doi:10.3762/bjnano.10.12

Graphical Abstract
  • microscopy (cAFM) and Kelvin probe force microscopy (KPFM) are the major methods that enable the study of the movement of charge carriers and their pathways [1]. We note that the KPFM method is rapidly becoming a tool capable of time-resolved studies. In this context, Yann Almadori and co-workers discuss the
PDF
Editorial
Published 10 Jan 2019

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • photovoltaic process and the correlation to the nanoscale morphology. A down-shift of the vacuum level of the TiO2 surface upon grafting was measured by Kelvin probe force microscopy (KPFM), evidencing the formation of a dipole at the TiO2/P3HT-COOH interface. Upon in situ illumination, a positive photovoltage
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

Numerical analysis of single-point spectroscopy curves used in photo-carrier dynamics measurements by Kelvin probe force microscopy under frequency-modulated excitation

  • Pablo A. Fernández Garrillo,
  • Benjamin Grévin and
  • Łukasz Borowik

Beilstein J. Nanotechnol. 2018, 9, 1834–1843, doi:10.3762/bjnano.9.175

Graphical Abstract
  • this context, few teams around the world have recently began to develop time-resolved scanning probe microscopies (SPM) techniques, aimed at addressing the photo-carrier dynamics at the local scale in photoactive materials and devices. At this point, Kelvin probe force microscopy (KPFM) emerged as a
PDF
Album
Full Research Paper
Published 20 Jun 2018

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

  • Amelie Axt,
  • Ilka M. Hermes,
  • Victor W. Bergmann,
  • Niklas Tausendpfund and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2018, 9, 1809–1819, doi:10.3762/bjnano.9.172

Graphical Abstract
  • investigate the influence of the operation method in Kelvin probe force microscopy (KPFM) on the measured potential distribution. KPFM is widely used to map the nanoscale potential distribution in operating devices, e.g., in thin film transistors or on cross sections of functional solar cells. Quantitative
  • modulation (AM) and frequency modulation (FM) Kelvin probe force microscopy (KPFM) methods under ambient conditions to investigate how these methods can measure quantitative variations in the local contact potential difference (CPD). KPFM is a scanning force microsopcy (SFM) method that correlates the local
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • du Parc 20, B7000 Mons, Belgium 10.3762/bjnano.9.161 Abstract In this work, methylammonium lead tribromide (MAPbBr3) single crystals are studied by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). We demonstrate that the surface photovoltage and crystal
  • . Keywords: carrier lifetime; ion migration; Kelvin probe force microscopy (KPFM); noncontact atomic force microscopy (nc-AFM); organic–inorganic hybrid perovskites; photostriction; single crystals; surface photovoltage (SPV); time-resolved surface photovoltage; Introduction Organic–inorganic hybrid
  • conversion efficiencies exceeding 20% and several kinds of optoelectronic devices, including efficient light-emitting diodes [3], laser devices [4] and high-gain photodetectors [5]. Recently, Kelvin probe force microscopy (KPFM) has been used to investigate the impact of grain boundaries (GBs) on the
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018
Other Beilstein-Institut Open Science Activities